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ABSTRACT
Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical

trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre-existing

Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing

antibodies that bind virus and block target cell transduction can be developed. Furthermore, memory T cell and humoral responses to Ad5 are

associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies

have been performed in naı̈ve animals; although pre-existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of

the most neglected experimentally. Here we summarize findings using adenovirus vectors in naı̈ve animals, in Ad-immunized animals and in

clinical trials, and review strategies proposed to overcome innate immune responses and pre-existing immunity. J. Cell. Biochem. 108: 778–

790, 2009. � 2009 Wiley-Liss, Inc.
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A denovirus vectors have many promising traits for gene

therapy; they efficiently transduce many proliferating and

quiescent cell types, can ‘‘package’’ large amounts of foreign DNA,

can be grown to high titers and are not germ line transmitted.

However, adenovirus-mediated transgene expression is generally

transient; ranging from weeks to a few months. Temporal limitation

of transgene expression results mainly from immune responses that

develop against both vector and transgene products.

Adenovirus vectors often elicit strong innate inflammatory

responses within hours after administration [Muruve et al., 1999].

Following the initial innate immune response, neutralizing

antibodies to viral capsid proteins (fiber, hexon, penton) develop

in naı̈ve animals within 1 week. Neutralizing antibodies reduce the

infectious titer of a virus and the transduction of target cells by

adenovirus gene therapy vectors. [Neutralizing titers are determined

in vitro by serially diluting immune sera and determining the

highest serum dilution that inhibits transgene expression or plaque

formation by 50%. The neutralizing titer is the reciprocal of this
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dilution value. Sprangers et al. [2003] discuss the advantages and

disadvantages of several in vitro neutralization assays; Pichla-

Gollon et al. [2009] report that in vitro antibody neutralization

assays may, in fact, underestimate Ad5 inhibition by circulating

anti-Ad5 antibodies in vivo.]

Anti-adenovirus antibodies inhibit virus transduction after vector

re-administration. Moreover, CD8þ T cell immune responses

against both vector capsid components and transgene products

eliminate target cells expressing these proteins. Thus, even in the

absence of pre-existing immunity, adenovirus vectors are not

suitable for correction of chronic disorders requiring repeated vector

administration, and might be adequate only for therapeutic

strategies that require short-term expression, unless the immune

response resulting from an initial vector challenge can be eliminated

or circumvented.

Because immune responses prevent long-term expression or

repeated adenoviral vector challenge, most clinical trials have been

based on protocols that target cancer. For such an application,
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transient transgene expression is designed to eliminate target cells

or to initiate anti-tumor responses. Adenoviruses are also utilized to

promote vaccine development; in this application investigators

attempt to exploit as therapeutic advantage—rather than circum-

vent—adenovirus immunogenicity. However, pre-existing immu-

nity is likely to limit adenovirus utility both as a gene therapy vector

and as a vaccine vector. Forty to ninety seven per cent of humans

have neutralizing antibodies to Ad5, the most frequently used

adenovirus vector in gene therapy and vaccine protocols [Chirmule

et al., 1999; Vogels et al., 2003].

We review here Ad5 cell interactions, innate and adaptive

immune responses to adenovirus vectors and studies in

which adenovirus vectors are used in immunized animals and

in clinical trials. We conclude by discussing strategies to

circumvent humoral and cellular capsid responses, and consider

approaches to improve adenovirus gene therapy in seropositive

individuals.

ROUTES OF ADENOVIRUS CELL ENTRY

The most widely studied adenovirus cell entry pathway, commonly

studied with cultured fibroblasts, epithelial and endothelial cells,

begins when the adenovirus fiber protein ‘‘knob’’ engages cells

through an interaction with the cellular cocksackie and adenovirus

receptor (CAR). Virus internalization is subsequently facilitated by

interaction of the viral penton base protein RGD motif with cellular

integrins [Wickham et al., 1993].

Following intravenous injection into naı̈ve mice, nearly all Ad5-

directed transgene expression occurs in the liver [Stratford-

Perricaudet et al., 1990]. Elevated hepatic transgene expression

was initially attributed to high hepatic CAR levels [Tomko et al.,

1997] and to the relative accessibility of liver cells to circulating

adenovirus, compared to other tissues, because of differences in

vascular endothelial barriers [Zinn et al., 1998]. Moreover, genetic

ablation of viral CAR and integrin binding was reported to reduce

liver transduction following systemic virus administration [Einfeld

et al., 2001]. Several studies, however, suggest CAR is not present on

epithelial cell surfaces in vivo, but is located in tight junctions where

it is inaccessible to virus [Cohen et al., 2001]. Moreover, additional

studies report that ablation of adenovirus CAR and integrin binding

does not reduce liver transduction by intravenously administered

virus [Nicklin et al., 2005], suggesting other receptors/entry

pathways are responsible for hepatic adenovirus transduction in

vivo.

Shayakhmetov et al. [2005] suggested circulating proteins (e.g.,

Factor IX and complement C4 binding protein) act as ‘‘molecular

bridges,’’ binding to fiber knobs and mediating virus entry into cells

through receptors such as heparan sulfate proteoglycan (HSPG) or

low density lipoprotein receptor-related protein. However, systemic

adenovirus administration to FIX knockout and wild-type mice

results in equivalent hepatic transgene expression. In contrast, in the

absence of all vitamin K-dependent serum coagulation factors

(including Factor IX), hepatic adenovirus transduction is diminished

[Parker et al., 2006]. Moreover, Factor X alone restored hepatic

transduction [Parker et al., 2006]. Several labs subsequently
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demonstrated human and murine Factor X bind, with high affinity,

to the adenovirus hexon protein, and suggested HSPGs mediate

adenovirus hepatocyte entry [Kalyuzhniy et al., 2008; Waddington

et al., 2008] (Fig. 1, left panel). Adenovirus vectors unable to bind to

CAR were similarly unable to transduce liver in the absence of

vitamin-K dependent coagulation factors [Waddington et al., 2007].

These results suggest CAR plays at best a minor role in hepatic

adenovirus transduction in vivo in the experimental animal models

described here.

Kupffer cells (liver macrophages) are responsible for rapid hepatic

uptake of low adenovirus doses (up to 3� 1010 particles); higher

virus doses overcome this biological filter effect and initiate

hepatocyte transduction [Tao et al., 2001]. Kupffer cells take up virus

mainly through scavenger receptors, complement receptors (CR) and

immunoglobulin Fc-receptors (Fc-R) [Xu et al., 2008] (Fig. 1, right

panel). Although Kupffer cells are transduced, transgene expression

is inefficient. Di Paolo et al. [2009] showed, by analyzing viral DNA,

that FX-ablated virus or virus injected into Kupffer cell-depleted

animals is still sequestered in the liver. Only when a virus that

was depleted of its capsid RGD peptide was administered to

Kupffer cell depleted mice in the presence of Warfarin (i.e., in

the absence of FX), was adenovirus sequestration by the liver

reduced by �80%. The results of Di Paolo et al. [2009] suggest that

adenovirus liver sequestration is mediated by multiple redundant

mechanisms. We should point out that the extent of adenovirus

sequestration by the liver following intravenous challenge varies

with species.

Adenovirus also interact with blood cells [Lyons et al., 2006;

Stone et al., 2007b]. Systemically administered adenovirus can

cause thrombocytopenia in patients. Adenovirus is associated with

platelets in murine liver sinusoids [Stone et al., 2007b]. Platelet

depletion reduced adenovirus accumulation in murine liver

following intravenous injection, suggesting platelet binding con-

tributes to murine liver transduction [Stone et al., 2007b]. However,

platelet removal does not reduce adenovirus uptake by murine

Kupffer cells [Xu et al., 2008]. In blood samples from clinical trials

with patients who received intratumoral adenovirus injections, 99%

of adenovirus DNA in the circulation was associated with human

blood cells. When incubated with human erythrocytes ex vivo,

Ad5 was sequestered; incubation of erythrocyte-bound virus with

epithelial cells reduced transgene expression [Lyons et al., 2006]. In

contrast, incubation of Ad5 with murine blood did not reduce the

ability of the virus to transduce cells in culture. Seiradake et al.

[2009] demonstrated that Ads of different serotypes, all of which

agglutinate human red blood cells, interact with these cells via

different cellular receptors. CAR present on human red blood cells

has recently been reported to be responsible for Ad5 sequestration

[Carlisle et al., 2009]. The studies described in this paragraph,

which suggest that alternative adenovirus vectors interact dif-

ferently with murine and human blood cells, clearly require

additional investigation and suggest caution in extrapolating

to clinical contexts results of investigations using systemic

adenovirus administration in mice. It will be of great interest to

examine binding to human and murine blood cells of various types

by adenovirus with mutations in proposed receptor recognition

sites.
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Fig. 1. Adenovirus transduction of hepatocytes and Kupffer cells following intravenous administration in naı̈ve mice. After intravenous injection into naı̈ve mice, adenovirus

vectors very efficiently transduce liver hepatocytes. This transduction is now thought to be dependent on serum factors such as FX that bridge the virus to hepatic heparan

sulfate proteoglycans (HSPGs). Other serum factors (SF), including FIX and complement components, also bind to capsid proteins. However, their role in hepatocyte virus

transduction is less clear at this time. Transduction into hepatocytes is followed by robust transgene expression. Kupffer cells (liver macrophages) take up virus mainly through

scavenger receptors, complement receptors (CR) and Fc-receptors for immunoglobulin (Fc-R). However, transgene expression is substantially less in Kupffer cells than that

observed in transduced hepatocytes. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
INNATE AND ADAPTIVE IMMUNE RESPONSES
TO ADENOVIRUS

Adenovirus induces both innate and adaptive immune responses.

The innate immune system is comprised of (1) cells, including

macrophages, dendritic cells, neutrophils, mast cells and

natural killer (NK) cells, (2) serum protein immune mediators,

including chemokines, cytokines and complement and (3) ‘‘hard-

wired’’ intracellular and extracellular innate receptors, termed

pattern recognition receptors (PRR), that recognize pathogen-

associated molecular patterns (PAMPs) such as bacterial cell-wall

components. The innate immune system is activated rapidly in

response to incoming pathogens. These features—in particular, the

rapidity of the response—distinguish the innate immune response

from the adaptive immune response, which requires B and T cell

maturation and function, and needs approximately 1 week to

become effective.

In animal models, adenovirus administered intravenously to

naı̈ve individuals is sequestered in multiple organs, including

spleen, heart, lung and liver. However, transgene expression occurs

mainly in hepatocytes [Koizumi et al., 2007]; transgene expression

in other cells—including those of the immune system—is usually

lower than that observed in hepatocytes, despite effective cell entry.

Because of preferential hepatic transgene expression, adenovirus

uptake in other organs is often underestimated.

Acute inflammatory responses to adenovirus in livers of naı̈ve

recipients begin with rapid induction of pro-inflammatory cytokine

and chemokine expression. This ‘‘cytokine storm’’ is followed by
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leukocyte infiltration, resulting in necrosis and tissue damage

[Muruve et al., 1999; Schnell et al., 2001]. Adenovirus-induced

acute toxicity is dose-dependent and independent of viral gene

expression, indicating the viral capsid elicits the innate immune

response [Muruve et al., 1999]. The innate immune response can lead

to tissue damage that culminates in elimination of virus-transduced

cells and consequent reduction in the level and duration of

transgene expression [Guidotti and Chisari, 2001]. In addition,

interferons can be induced that block transcription in infected cells

that remain viable [Guidotti and Chisari, 2001; Sadler and Williams,

2008].

Adenovirus bound to serum proteins (e.g., complement factors,

coagulation factors, non-specific immunoglobulins) in naı̈ve

individuals engage receptors such as complement receptors or

Fc-receptors on immune cells which, in turn, contain PRRs.

Activation of innate receptors such as TLR9 and NALP3 in cells

of the immune system can induce inflammatory responses, leading

to type I interferon (IFN) induction in murine dendritic cells and to

IL-1b-processing in murine and human macrophages [Muruve et al.,

2008; Zhu et al., 2007].

Innate pathways of viral clearance are very effective, even in

naı̈ve recipients. Recall that Kupffer cells clear adenovirus more

effectively at low doses than do hepatocytes [Tao et al., 2001].

CD11cþ spleen cells take up adenovirus vector and secrete

IL-6, but—like Kupffer cells—express viral transgenes poorly.

Similarly, alveolar macrophages internalize adenovirus adminis-

tered to the lung, and produce IL-6 and TNF-a [Zsengeller et al.,

2000]. These findings suggest cells of the immune system play
JOURNAL OF CELLULAR BIOCHEMISTRY



key roles in initial virus uptake and in cytokine/chemokine

expression observed immediately following intravenous virus

administration, even in naı̈ve individuals. They also demonstrate

the differences among cell types in virus uptake versus vector

transgene expression.

The innate immune response subsequently initiates the adaptive

response and modulates its progression. Adenovirus-transduced

macrophages and dendritic cells function as antigen presenting cells

and elicit adaptive responses, including cytotoxic T-cell responses

to both viral proteins and vector-encoded transgene products

expressed by transduced cells [Yang et al., 1995]. Macrophages

transport adenovirus to lymph nodes, where B cells produce

antibodies to capsid proteins [Junt et al., 2007]. Memory CD8þ
T cells, primed for life, recognize antigen-expressing tissue cells,

leading to their rapid elimination. Following vector re-challenge,

circulating neutralizing antibodies prevent virus transduction and

memory T cells reduce transgene expression and kill transduced

cells.

Because of the potential value of adenovirus vectors for gene

therapy and vaccine development, and the roadblocks presented

by Ad5-induced immunity, the mechanisms by which immune

responses to adenovirus vectors are generated have been the topic of

extensive effort. However, most studies of innate and adaptive

responses to adenovirus vector transduction have been performed in

naı̈ve mice, not previously exposed to virus. Antibody binding

to adenovirus in immune individuals is likely to inhibit vector

transduction of target epithelial cells such as hepatocytes and to

elicit increased uptake by Fc-receptor bearing immune cells such as
Fig. 2. Adenovirus transduction of hepatocytes and Kupffer cells following intravenou

mouse, hepatocyte transduction following intravenous injection is blocked by antibodi

increased uptake by the Kupffer cells, through Fc receptors on their surface. Because Kup

animals results in overall reduced transgene expression. [Color figure can be viewed in
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Kupffer cells, resulting in rapid vector clearance and exacerbated

inflammatory response (Fig. 2).

ADENOVIRUS VECTORS IN ANIMAL MODELS
AND CLINICAL TRIALS: EFFECT OF
PRE-EXISTING IMMUNITY

Ad5 binds efficiently to dendritic cells (DCs), in an FcR-dependent

fashion, in the presence of anti-Ad5 antibodies. In addition to

increasing Ad binding, Ad5 antibodies also increase viral uptake

into DCs. However, despite anti-Ad5 antibody increased binding and

uptake by DCs, Ad-immunized mice injected with an adenovirus

vector develop a reduced transgene-specific CD8þ T-cell immune

response compared to naı̈ve mice, suggesting antibody-enhanced

vector DC uptake does not result in enhanced transduction (i.e.,

transgene expression) in vivo [Mercier et al., 2004]. Perreau et al.

[2008] compared the interaction of adenovirus vectors with human

DCs in the presence or absence of antibodies and found that

adenovirus-immune complexes (IC) stimulated increased DC

activation and maturation in an Fc-receptor dependent fashion.

Ad-IC also increased the ability of DCs to prime Ad-specific CD8þ
T cells in vitro. Anti-adenovirus antibodies also increase FcR-

dependent uptake of virus by macrophages, but target virus to

phagolysosomes. Moreover, anti-adenovirus antibodies amplified

innate intracellular pathways, leading to elevated expression of

genes associated with the innate immune response in vitro and

in vivo in mice [Zaiss et al., 2009]. Vlachaki et al. [2002] studied the
s administration in mice with circulating anti-adenovirus antibodies. In an immunized

es that bind to the adenovirus capsid. In contrast, antibody coating of virus leads to

ffer cells do not efficiently express viral transgenes, virus administration to immunized

the online issue, which is available at www.interscience.wiley.com.]
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effects of pre-immunization on intratumorally administered

adenovirus transduction in a subcutaneous mouse mammary tumor

model. Mice were immunized with adenovirus lacking a transgene.

Two weeks later immunized and naı̈ve mice received an

intratumoral Ad-luciferase injection. Pre-immunization resulted

in reduced tumor luciferase expression levels and reduced duration

of transgene expression. Moreover, viral toxicity was greater in

immunized animals; increased histologic hepatic damage, increased

circulating hepatic enzyme levels and increased mortality relative to

naı̈ve mice occurred. These results suggest that preimmunity can

exacerbate toxicity, rather than protecting the host, following viral

administration.

In contrast, mice pre-immunized by intramuscular adenovirus

injection showed less hepatic toxicity following rechallenge,

reflected both by liver histopathology and by serum transaminase

analysis [Varnavski et al., 2005]. However, pre-immunization did

not prevent systemic toxicity, reflected by increased serum pro-

inflammatory cytokines. Consistent with the previous study

[Vlachaki et al., 2002], pre-immunized animals were at higher

mortality risk following vector challenge; 17/81 pre-immunized

mice died with 24 h following adenovirus administration (11 within

the first hour), while no deaths occurred in this time period among

46 naı̈ve mice.

When immunodeficient mice were supplemented with rabbit

serum IgG fractions containing anti-adenovirus antibodies and

subsequently challenged with adenovirus, they exhibited less

toxicity than control mice. Moreover, mortality was reduced [Chen

et al., 2000]. The action of rabbit anti-adenovirus antibodies in mice

is restricted to virus neutralization; the Fc-portion of rabbit IgG is

incompatible with murine immune cells. This result suggests the Fc

portion of anti-adenovirus antibodies in immunized mice is

responsible for the toxicity and mortality observed following virus

administration.

Adenovirus toxicity has also been studied in immunized rhesus

monkeys [Varnavski et al., 2002]. Immunity was induced by

intramuscular adenovirus immunization, followed after 6 months

with intravenous vector rechallenge. Virus pre-exposure diminished

subsequent b-galactosidase transgene expression, following a

second virus challenge, in the liver and in other tissues, but had

little effect on viral DNA levels present in most tissues. Like the

murine studies, the data suggest virus is taken up in the presence of

antibodies, but transgene expression is suppressed. Cell fractiona-

tion, histologic and genomic DNA analysis suggested anti-

adenovirus antibody re-directed vector uptake into innate immune

cells. Pre-immunity did not eliminate toxicity; like the murine

studies [Vlachaki et al., 2002; Varnavski et al., 2005], elevated serum

pro-inflammatory cytokine levels were present in monkeys

receiving the second virus challenge. A reduction of erythroid

progenitor cells in the bone marrow [Varnavski et al., 2002] of pre-

immunized—but not naı̈ve—animals was also observed.

Although neither intramuscular nor oral administration of an

Ad5 vaccine vector designed to protect mice from Ebola challenge

were able to prevent Ebola-induced lethality in mice previously

immunized with Ad5, intranasal administration of the Ad5 vaccine

vector protected against subsequent Ebola challenge [Croyle et al.,

2008]. These data and additional observations suggest that
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alternative routes of delivery for adenoviral therapeutic and vaccine

vectors should continue to be examined as potential methods for

evading pre-existing Ad immunity.

Unlike the non-replicating adenovirus vectors discussed above,

oncolytic adenoviruses are engineered to be unable to replicate in

normal human cells, but to be capable of replicating within and lyse

human tumor cells. However, adenovirus does not replicate in mice,

thus limiting the utility of murine models. Tsai et al. [2004] studied

the impact of humoral immunity on oncolytic adenovirus therapy in

a mouse tumor xenograft model. Nude mice were reconstituted with

human sera containing anti-adenovirus antibodies, to establish

immunity equivalent to humans. The sera did not decrease

intravenously administered oncolytic adenovirus anti-tumor

efficacy. While oncolytic adenovirus vectors may overcome

neutralizing antibodies, since only a small number of replicating

virus that reach the tumors might be sufficient to have a therapeutic

effect, questions remain regarding this experiment. The Fc-portion

of human IgG may be incompatible with murine cells; Fc-dependent

effector functions might not occur in this model.

In contrast to mice, Syrian hamsters—like humans—are permis-

sive for Ad infection. Dhar et al. [2009] recently examined the anti-

tumor efficacy of a replicating oncolytic adenovirus (INGN 007) in

previously immunized, immunocompetent Syrian hamsters. Pre-

immunity to Ad5 did not significantly change the anti-tumor effects

of the virus when the virus was injected intratumorally into

subcutaneous renal tumor grafts. Preimmunity also prevented virus

spill-over to other organs.

In the one example we are aware of where baseline anti-

adenovirus antibody titers were examined in a clinical trial (an

oncolytic adenovirus injected intratumorally into prostate cancers),

‘‘there was no evident correlation between baseline antibody titer

and subsequent PSA response’’ [DeWeese et al., 2001]. The three

studies cited here on the potential for evasion of anti-Ad immunity

by oncolytic adenovirus vectors are provocative. It will be of great

interest to extend studies of the efficacy of replicating oncolytic

adenovirus tumor therapy in previously immunized, immunocom-

petent animal models and in additional clinical trials, particularly

following systemic virus administration.

Of note, the only currently approved clinical adenovirus therapy

application employs an oncolytic adenovirus. In clinical trials,

patients treated with the virus develop fevers after injections and

show increased anti-viral antibody titers. No objective tumor

response was demonstrated with virus alone. Because tumor

stabilization was observed in patients treated with high viral doses,

in combination with chemotherapy, this virus was approved in

China for head and neck cancer treatment by direct intratumoral

injection [Garber, 2006].

Exploitation of adenovirus immunogenicity has been used in

attempts to develop vaccination vectors for tumors and for

infectious diseases. Robust T cell responses are observed when

HIV antigens are expressed from adenovirus vectors, resulting in

protection against HIV infection in naı̈ve primate models. Similar

vectors induce anti-HIV CD8þ T cell responses in humans

[Vanniasinkam and Ertl, 2005], suggesting this approach might

limit disease progression. However, results in primate trials were less

encouraging; monkeys injected with an empty adenovirus vector
JOURNAL OF CELLULAR BIOCHEMISTRY



prior to injections with Ad5-HIV gag had attenuated anti-gag T cell

responses, compared to naı̈ve animals [Casimiro et al., 2003].

The high prevalence of human anti-Ad5 antibodies, especially

in sub-Saharan Africa, suggests adenovirus vector administration

will likely lead both to antibody neutralization and to a rapid,

exacerbated cellular immune response in many individuals. The

resulting vector elimination is anticipated to be an impediment to

the development of a T cell response to the vector-driven antigen,

since enhanced viral clearance would result in greatly reduced

transgene expression.

The practical scope of this problem is illustrated by the HIV-STEP

trial, the first clinical trial of vaccine-induced cellular HIV immunity

in humans. Three thousand healthy volunteers were immunized with

a combination of adenovirus vectors expressing gag, pol, and nef

genes. The trial was intended to test the vaccine’s ability to reduce

infection and/or viral load. The vaccine showed promising results in

Phase I and II studies. However, although vaccination was successful

in inducing HIV-specific CD8þ T cells, it failed to protect Ad5

seronegative individuals from HIV infection [Buchbinder et al.,

2008]. Moreover, in participants with high initial anti-Ad5 antibody

titers, the vaccine appears to have increased HIV infection [McElrath

et al., 2008]. Two subsequent phase I trials using Ad5 vectors

expressing only the gag gene suggest that systemic adverse events

(22 categories) were more frequent in subjects with low (<200)

baseline anti-Ad5 antibody titers versus subjects with higher Ad5

(>200) titers. HIV gag peptide immune responses (ELISPOT

analyses) were also more frequent in individuals with low baseline

anti-Ad5 antibody titers, varying inversely with baseline anti-Ad5

neutralizing antibody titer [Harro et al., 2009]. The results of the

STEP trial and the subsequent study by Harro et al. [2009]

demonstrate the practical consequences of the evidence that Ad5-

mediated vaccine efficacy is likely to be impaired in humans that

have even moderate anti-Ad5 antibody titers. These studies

emphasize the need to develop strategies to overcome pre-existing

immunity, if adenovirus vectors are to become valuable general

tools in gene therapy and vaccination applications.

In a very interesting exception to the rule, Tuve et al. [2009] found

that direct intratumoral injection of ‘‘non-replicating, transgene-

devoid’’ Ad5 into transplanted subcutaneous mammary tumors in a

syngeneic, immunocompetent mouse model elicited an immune

response, mediated primarily by CD4þ and CD8þ T cells that

inhibited tumor growth and increased survival time. Remarkably,

pre-existing anti-Ad immunity enhanced the efficacy of intratu-

moral Ad5 therapy, increasing survival time. While the effect of this

approach on tumors at distant sites is not yet known, the observation

leads to a number of surprising and interesting potential avenues of

exploitation.

STRATEGIES TO OVERCOME
PRE-EXISTING IMMUNITY

HELPER-DEPENDENT VECTORS: ESCAPE FROM

IMMUNE DETECTION?

Cells transduced with non-replicating first generation adenovirus

vectors express viral genes, leading to display of capsid protein

epitopes on transduced cell membranes. Continued capsid expres-
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sion in transduced cells likely contributes to continued inflamma-

tion, enhanced immune-mediated virus clearance and memory

T cell killing of transduced cells in an immunized host. Helper-

dependent (HD) adenovirus vectors (HD-Ads, also called ‘‘third

generation’’ or ‘‘gutless’’ adenoviruses) have nearly the entire viral

genome deleted; no viral genes are transcribed after gene transfer

[Parks et al., 1996]. HD-Ads can accommodate up to 35 kb of foreign

DNA. Although generally reported to elicit reduced immunogenicity

and prolonged transgene expression, several groups report that HD-

Ad vectors induce innate immune responses in a pattern similar to

that induced by first-generation adenovirus vectors. Like mice

injected with first generation vectors, mice injected intravenously

with HD-Ad vectors express innate immune response-associated

genes, including inflammatory cytokines and chemokines in the

liver within the first 24 h post injection [Muruve et al., 2004;

McCaffrey et al., 2008]. In baboons, intravenous HD-Ad caused

acute, dose-dependent toxicity in naı̈ve animals [Brunetti-Pierri

et al., 2004]. These HD-Ad studies support a growing body

of evidence that the innate immune response to adenovirus is

independent of viral gene expression [Kafri et al., 1998; Muruve

et al., 1999; Zsengeller et al., 2000]. HD-Ad vectors can also provoke

transgene-specific immunity [Muruve et al., 2004; McCaffrey et al.,

2008].

First generation, conventional adenovirus vectors induce a

second liver inflammation phase that includes additional inflam-

matory gene expression and hepatic lymphocyte infiltration at

7 days post-transduction [Muruve et al., 2004]. This second peak of

inflammation likely originates from cytotoxic T lymphocytes (CTLs)

that destroy transduced cells, which continuously express viral

genes and, therefore, display capsid peptides on their surface. In

contrast, HD-Ad do not induce expression of inflammatory genes

beyond 24 h post-injection [Muruve et al., 2004]. Moreover,

lymphocyte infiltration at 7 days does not occur. Since HD-Ad

vectors lack viral genes, capsid proteins are provided only by the

incoming virus and are only transiently presented by MHC I

molecules in transduced cells. Once epitopes from the HD-Ad capsid

are metabolized, cells containing vector DNA are no longer

recognized by capsid-specific T cells; consequently transgene

expression persists. These HD-Ad properties are likely reasons for

improved transgene expression in naı̈ve animals following

transduction with helper-dependent vectors versus transduction

with conventional adenovirus vectors.

Whether HD-Ad vectors confer much advantage over-first

generation vectors in immunized hosts remains to be determined.

In immunized hosts, HD-Ads will still be neutralized by anti-

adenovirus antibodies. In addition, transient capsid epitope display

on HD-Ad transduced cells in immunized hosts is likely to be

sufficient for re-activation of memory T cells and consequent killing

of vector-transduced cells [Molinier-Frenkel et al., 2000]. Thus,

hepatic HD-Ad transgene expression in pre-immunized mice or

baboons was only achieved with an HD-Ad vector of a different

serotype [Morral et al., 1999; Parks et al., 1999], suggesting that HD-

Ad vectors do not escape pre-existing immunity. In contrast, when

an HD-Ad was injected intramuscularly into immunized mice, stable

transgene expression could be achieved. Stable transduction was,

however, not obtained when the HD-Ad was injected intravenously
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[Maione et al., 2001] into pre-immunized mice. These data suggest

HD-Ad organ/tissue injection might circumvent systemic immunity

in certain circumstances. In cell culture, [HD-Ad][neutralizing anti-

Ad antibody] complexes are less potent in activating dendritic cells

than are first-generation [Ad][neutralizing anti-Ad antibody]

complexes [Perreau et al., 2008].

A cautionary note; helper virus contamination in HD-Ad

preparations can vary substantially, and is often not well-described.

Consequently, comparisons of both innate and adaptive responses

among various HD-Ad reports may be compromised. Additional

investigation is needed to determine effects of pre-existing

adenovirus immunity on therapeutic applications of HD-Ad vectors.

GENE THERAPY IN THE BRAIN: IMMUNE-PRIVILEGED SITES AND

SYSTEMIC IMMUNITY?

Adenovirus vectors injected into the brain can cause a dose-

dependent local inflammatory response [Byrnes et al., 1995].

However, adenovirus-induced brain inflammation has a threshold

of�1� 108 infectious units in the rat [Lowenstein et al., 2007]. Once

this threshold is crossed, interferon (IFN) and chemokine expression,

microglia activation, and macrophage/lymphocyte recruitment

occurs, resulting in chronic inflammation and toxicity. At vector

doses below threshold, however, long-term transgene expression

continues for up to 1 year [Lowenstein et al., 2007]. Thus, although

adenovirus vectors elicit only temporary expression in peripheral

organs, long-term expression in brain is possible in naı̈ve animals—

as long as non-inflammatory viral doses are administered.

To test whether adenovirus-mediated transgene expression in

brain is affected by subsequent systemic immunization, rats initially

injected in the brain with a sub-threshold adenovirus vector dose

were injected subcutaneously, 2 months later, with a vector

encoding a different transgene. Brain inflammation and loss of

brain transgene expression followed, accompanied by lymphocyte

and macrophage infiltration into brain parenchyma [Byrnes et al.,

1995, 1996; Barcia et al., 2006]. Immunological synapses were

detected in the brain during clearing of transduced astrocytes,

confirming that virus-transduced brain cells were cleared by

activated cytotoxic lymphocytes [Barcia et al., 2006; Lowenstein

et al., 2007].

As few as 1,000 vector particles injected into the mouse brain

were subsequently recognized and cleared by the adaptive immune

system following peripheral immunization. The inflammatory

immune response in the brain was independent of either the

promoter or the transgene used. Reversing the challenge led to a

similar result; when mice were pre-immunized intraperitoneally

with an adenovirus vector to establish anti-Ad immunity and then

injected 30 days later in the brain with a vector encoding a different

transgene, transgene expression was eliminated [Barcia et al., 2007;

Lowenstein et al., 2007].

In contrast to conventional adenovirus vectors, HD-Ad can

efficiently transduce brain and mediate stable transgene expression

for up to 1 year, even in the presence of pre-existing anti-Ad

immunity [Thomas et al., 2000; Barcia et al., 2007]. HD-Ad efficacy

in promoting long-term transgene expression, even in mice with

pre-existing anti-Ad immunity, suggests that brain-directed gene

therapy using HD-Ad vectors may be practical even in seropositive
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patients. Pre-existing systemic immunity against the transgene does

abrogate even HD-Ad transgene expression in the brain and is

accompanied by brain inflammation [Xiong et al., 2008]. However,

pre-existing immunity to therapeutic gene products is not likely to

be nearly as prevalent as pre-existing immunity to adenovirus

capsid proteins. Indeed, this same group has demonstrated a potent

therapeutic response to HD-Ad directed Herpes Simplex Virus

thymidine kinase/ganciclovir therapy and long term survival of rats

carrying a syngeneic intracranial glioma, ‘‘even in the presence of

systemic antiadenovirus immunity’’ [King et al., 2008].

In summary, using a combination of brain as an immune-

privileged site for gene transfer and HD-Ad vectors, pre-existing

immunity may be overcome; long-term transgene expression can be

achieved in brain, providing systemic immunity against the

transgene is not present. However, this observation has not been

generalized to a variety of transgenes. We expect clinical trials for

HD-Ad therapy of brain tumors to soon be initiated.

CAN PRE-EXISTING IMMUNITY BE AVOIDED BY CHANGING

ADENOVIRUS SEROTYPES?

More than 50 adenovirus serotypes infect humans. Frequencies of

serotype-specific antibodies vary widely in human populations. Ad5

antibodies are most common [Vogels et al., 2003]; vectors derived

from other adenovirus serotypes may be able to escape Ad5

immunity. Several laboratories demonstrated (i) Ad35 immunity is

less prevalent than Ad5 immunity in humans and (ii) Ad35 vectors

are able to evade Ad5 immunity in mice and in human cells [Vogels

et al., 2003; Barouch et al., 2004; Brouwer et al., 2007], leading to

transgene expression (or to a transgene immune response in vaccine

applications) in the presence of Ad5 antibodies. Other relatively rare

human serotypes that appear promising in evading Ad5 immunity

include Ad2 [Morral et al., 1999], Ad49 [Lemckert et al., 2006], Ad11

[Holterman et al., 2004] and Ad50, Ad26, and Ad48 [Abbink et al.,

2007].

Lore et al. [2007] compared Ad35 and Ad5 as vaccine vectors.

Cultured human dendritic cells were more susceptible to Ad35

transduction than to Ad5 transduction, likely due to the presence of

CD46 on dendritic cells; CD46 is the primary Ad35 receptor. Ad35

was also able to more effectively stimulate dendritic cell antigen

presentation to T cells, suggesting that Ad35 might be superior to

Ad5 for vaccine development. However, these results suggest

caution when employing Ad35 for gene therapy applications other

than vaccination, since Ad35 vectors may elicit potent transgene-

specific immune responses.

CD46, the receptor for many of these Ad serotypes, is expressed in

humans but not mice. Stone et al. [2007a] analyzed immune

responses and biodistribution for several adenovirus serotypes

(serotypes 3, 4, 5, 11, 35, and 41). Immunogenicity was tested by

injecting the vectors intravenously into naı̈ve CD46 transgenic mice.

Several serotypes induced unexpectedly high toxicity, with death

rates of 25% for Ad11 (1 of 4), 75% for Ad3 (3 of 4) and 100% for

Ad4 (4 of 4) at the highest dose (1� 1011 particles/mouse). In

contrast, at this virus titer death is rare for mice that receive Ad5.

Despite differences in biodistribution, receptor usage and mortality,

all adenovirus serotypes induced substantial IL-6, MCP-1, and IFN-g

release [Stone et al., 2007a], suggesting that use of high intravenous
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doses of any adenovirus for human gene therapy will need to be

approached with caution.

Ni et al. [2006] report that when naı̈ve C57-CD46 transgenic mice

were injected with Ad5/35-GFP, a virus in which the Ad5 fiber was

replaced with the fiber from Ad35, cytokine levels (IL5, TNFa, IFN-

a, IL12, MCP1) reflecting the innate immune response were all

significantly lower than when these mice were injected with Ad5-

GFP. Ad5/35 can also target metastatic and intraperitoneal tumors

that express hCD46, following intravenous and intraperitoneal

injection. To date, we are unaware of any studies of immune

responses to Ad vectors in pre-immunized CD46 transgenic mice.

Most humans possess circulating antibodies against a range of

adenovirus serotypes [Vogels et al., 2003]. In addition, T cells active

against one human adenovirus serotype may cross-react with

related serotypes [Smith et al., 1998]. One possibility for more

effective adenovirus vectors for gene therapy and vaccine use,

therefore, may be to develop vectors from different species, to escape

pre-existing Ad5 immunity. Farina et al. [2001] developed vaccine

vectors based on chimpanzee adenovirus serotype C68, to

circumvent pre-existing Ad5 neutralizing antibodies. In mice,

immunization with one Ad5 vector abrogated transgene immuno-

genicity elicited by a second Ad5 vector. In contrast, transgene

immunity was not eliminated when an AdC68 vector was used for

transgene expression [Fitzgerald et al., 2003]. However, transgene

immunity was slightly reduced in Ad5 pre-immunized animals

when using the chimp vector, because of Ad5-specific memory

CD8þ T cells that cross-react with chimp vector epitopes [Fitzgerald

et al., 2003].

Adenovirus vectors for gene therapy and vaccination have also

been developed from ovine [Hofmann et al., 1999], bovine [Reddy

et al., 1999], and porcine [Tuboly and Nagy, 2001] adenoviruses and

canine adenovirus serotype 2 (CAV-2) [Perreau and Kremer, 2006].

CAV-2 vectors elicited transgene expression for 1 year in rats,

without any obvious toxicity. Ad5 immunized mice exhibited strong

transgene efficacy following challenge with a CAV-2 vector.

Moreover, CAV-2 was not neutralized by 98% of human sera that

contained a wide range of antibodies to human adenovirus

serotypes. In addition, CAV-2 did not transduce or induce

maturation of human dendritic cells [Perreau and Kremer, 2006].

The development of an HD-CAV-2 vector may further expand its

potential as a clinical gene therapy vector; CAV-2 might be a safer,

more effective vector, when compared to Ad5, for long-term

transgene expression. However, inability of CAV-2 vectors to elicit

human dendritic cell maturation might reduce applicability of these

vectors for vaccination.

CAPSID-MODIFIED VECTORS AND ANTIVIRAL IMMUNITY
Genetic modification of adenovirus capsid proteins. Most adenovirus

capsid modifications have been made to alter virus tropism.

However, immune responses by tropism-modified adenovirus

vectors have been compared with immune responses to the parental

vectors. Schoggins and Falck-Pedersen [2006] and Schoggins et al.

[2005] mutated both the Ad5 fiber protein and penton base capsid

protein, on the assumption that hepatocyte viral entry is mediated

by knob-CAR and penton–integrin interactions. These vectors

generated a greatly reduced innate inflammatory response.
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and anti-transgene antibodies. Indeed, three of their CAR/penton

‘‘untargeted’’ adenovirus mutants induced anti-transgene immunity

greater than that induced by the unmodified Ad5 vector. These

vectors may, therefore, have substantial value for vaccine

production. However, since the bulk of the antibody response to

adenovirus vectors is directed toward the hexon protein [Sumida

et al., 2005], they are also likely to be poor gene therapy vectors for

patients with pre-existing immunity.

Iacobelli-Martinez and Nemerow [2007] analyzed IFNa produc-

tion from human peripheral blood mononuclear cells (PBMC)

transduced with Ad5 vector or Ad5 derivatives expressing fiber

proteins from Ads 37, 16, or 35. Ad5 vectors expressing the Ad35

fiber (which binds to CD46) induced more type I interferons in PBMC

than did wild type Ad5 (which binds to CAR). Adenovirus can

transduce HeLa cells both by CAR-mediated and CD46-mediated

pathways. Despite equivalent transduction rates by both viruses,

CD46-mediated viral entry ‘‘showed a preferential induction of

TLR9-mediated events,’’ including increased cytokine induction and

activation of NF-kB, relative to CAR-mediated transduction. Thus

the viral entry route plays a significant role in subsequent TLR9-

mediated innate immune responses; alterations in intracellular

trafficking due to capsid modifications can change the innate

immune response to adenovirus and the resulting toxicity. These

data suggest that CD46 mediated binding of adenovirus vectors to

mononuclear cells and dendritic cells plays a substantial role in the

innate immune response. Since mice do not express CD46, the

validity of mouse models for examination of innate and acquired

adenovirus immunity becomes an issue in translation to the clinic.

Although antibodies directed against adenovirus fiber proteins

and penton base protein do exist, the bulk of neutralizing anti-

adenovirus antibodies are directed against the hexon protein

[Sumida et al., 2005]. Several investigators constructed adenovirus

vectors in which the hexon gene of one serotype replaced the hexon

gene or hexon sequences of another serotype. Gall et al. [1998]

replaced the Ad5 hexon gene with either the entire hexon or with

specific hexon sequences (loop 1 and 2) from Ad2 and tested

whether the vector could escape pre-existing Ad5 immunity. The

hexon-modified viruses were neutralized to some degree by Ad5

antiserum in vitro, probably due to the epitope similarity between

the two vectors. Pre-existing anti-Ad5 immunity also suppressed

gene expression by the Ad5 hexon-modified vector in vivo [Gall

et al., 1998]. In contrast, when Ad5 viruses in which the endogenous

hexon gene was replaced with hexon genes from Ad3, Ad6, or Ad12

were administered to Ad5 immunized mice, there was no significant

loss in transgene expression [Roy et al., 1998; Wu et al., 2002; Youil

et al., 2002]. However, a large percentage of humans have

neutralizing anti-Ad3, anti-Ad6, and/or anti-Ad12 antibodies

[Vogels et al., 2003]. This proof-of-principle experiment will need

to be explored more thoroughly, with additional hexon modifica-

tions, to determine its practical feasibility for evading naturally

occurring neutralizing antibodies in human applications.

Roberts et al. [2006] engineered Ad5 vectors to obtain capsids that

can evade pre-existing immunity. Ad5 neutralizing antibodies are

mainly directed against the seven hypervariable regions (HVRs) of

the hexon subunit. Ad48 neutralizing antibodies are rare in the
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human population. By exchanging all seven Ad5 HVRs for Ad48

HVRs, they constructed a virus that could evade Ad5 neutralizing

antibody and produce CD8þ T cell responses to adenovirus-driven

SIV gag protein in Ad5 preimmunized mice. Ad5 vector did not

induce measurable anti-transgene immunity in Ad5 pre-immunized

mice or rhesus monkeys. In contrast, gag immunogenicity induced

by Ad5/HVR48 virus was comparable in both Ad5 pre-immunized

and naı̈ve mice and monkeys, suggesting the modified vector evades

Ad5 neutralizing antibodies. This study suggests that antibodies to

fiber and penton base proteins, generally present in low titers in Ad5

immunized hosts, do not play significant roles in virus neutraliza-

tion in this challenge protocol for Ad5/HVR8 immunization.

Chemical modification of adenovirus capsid proteins. Another

approach to reduce innate and adaptive adenovirus immunity in

naı̈ve individuals has been to ‘‘mask’’ viral epitopes by attaching

chemical polymers such as polyethylene glycol (PEG) to adenovirus

capsid proteins. PEGylated virus, administered intravenously to

naı̈ve mice, resulted in significantly reduced IL-6 serum levels 6 h

after injection when compared to the response to unmodified virus,

despite equivalent liver transduction [Croyle et al., 2005; Mok et al.,

2005]. PEGylated virus association with liver Kupffer cells was

reduced, as was IL-6 secretion from PEGylated virus-transduced

RAW 264.7 macrophages in culture [Mok et al., 2005]. Unlike

unmodified virus, PEGylated virus did not reduce platelet counts

leading to thrombocytopenia in mice, suggesting the polymer might

interfere with virus association with platelets in murine blood

[Croyle et al., 2005]. PEGylation also reduced cytotoxic T cell

activation and neutralizing antibody production when modified

virus was administered intravenously to naı̈ve animals [Croyle et al.,

2002].

Capsid PEGylation has also been proposed as a way to escape

adenovirus antibody neutralization in individuals immune to

adenovirus. The pioneering work of Chillon et al. [1998] demon-

strated adenovirus PEGylation enhanced transduction of cells

otherwise difficult to transduce; for example, mouse lung. PEG-

coated virus could also escape antibody neutralization in cell

culture. However, in vivo, PEGylated virus could escape antibody

neutralization only when administered intranasally. PEGylated

virus failed to induce transgene expression (measured as virus

transgene encoded a1-antitrypsin) when administered intrave-

nously to immunized mice. Similarly, in another study, PEGylated

virus was nearly equally effective in eliciting transgene expression

in lungs of adenovirus-immunized mice and naı̈ve mice following

intranasal administration [O’Riordan et al., 1999]. In contrast,

delivery of PEGylated virus to lungs of pre-immunized mice resulted

in 100-fold lower transgene expression when compared to the same

PEGylated virus administered to lungs of naı̈ve mice [Croyle et al.,

2001].

In naı̈ve mice, intravenously injected PEGylated virus increased

transgene expression in the liver fivefold relative to native virus;

moreover, hepatic transgene expression was prolonged in mice

receiving PEGylated adenovirus. Although rechallenge with

PEGylated vector of preimmunized mice expressing circulating

neutralizing antibody resulted in hepatic transgene expression, this

expression was substantially less (�1%) than that observed in naı̈ve
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mice receiving the same vector [Croyle et al., 2002]. In contrast, liver

transgene expression in immunized mice following injection of

PEGylated helper-dependent adenovirus was only one log lower

than hepatic expression in naı̈ve mice [Croyle et al., 2005].

Wortmann et al. [2008] challenged (intramuscularly) naı̈ve mice

that had been supplemented with sera from Ad5 immunized mice

either with a control vector expressing the small surface antigen of

hepatitis B antigen (AdHBsAg) or with PEGylated AdHBsAg, and

measured the cellular immune response to HBsAg 4 weeks later.

Passively Ad5-immunized mice receiving AdHBsAg had a 15%

response compared to naı̈ve mice receiving this same challenge.

Ad5-immunized mice receiving PEGylatd AdHBsAG had a 67%

response compared to naı̈ve mice, suggesting PEGylation can mask

intramuscularly injected virus from neutralizing antibody. Kreppel

and Kochanek [2008] recently reviewed polymer modification

effects on Ad transgene expression, innate immune response and

evasion of pre-existing immunity. Studies of immune escape by

PEGylated adenovirus in mice are growing in number; whether the

protection reported will be sufficient to use adenovirus vectors in

individuals with substantial anti-adenovirus titers, either for

vaccine development or for gene transfer therapeutic applications,

however, remains to be seen.

CONCLUSIONS

Both innate immune responses to adenovirus challenge and pre-

existing adenovirus immunity represent fundamental problems,

with great implications for both safety and efficacy of adenovirus

vector gene therapy applications. The limitations posed by pre-

existing immunity to gene therapy are not unique to adenovirus

vector systems. Although adeno-associated virus (AAV) vectors

elicit greatly reduced innate immune responses compared to

adenovirus vectors, pre-existing adaptive immunity in humans

has also limited the success of AAV2-gene therapy clinical trials

[Mingozzi and High, 2007]. While the problem(s) have been

recognized for some time, progress has lagged on these major

obstacles for clinical applications of an otherwise robust reagent.

Recall that the majority of the human population is adenovirus

seropositive [Chirmule et al., 1999]. Therefore, in the majority of

potential patients for adenoviral therapy, contact between virus and

blood will result in adenovirus-antibody complex formation. These

complexes are likely to induce inflammatory reactions in patients

equivalent to those observed in experimental animals. Indeed,

limited experience has demonstrated that adenovirus vectors can

cause severe inflammatory reactions in patients; reactions which

can result in systemic sepsis-like syndromes and even death.

Studies in immunized animals and clinical trials data suggest the

presence of anti-Ad5 antibodies results—not surprisingly—in

overall reduced target cell transduction and transgene expression.

Adenovirus immunity also results in decreased duration of

transgene expression, most likely due to memory T cell responses

that rapidly clear cells expressing viral capsid proteins. In addition

to reducing efficacy of gene therapy applications, neutralizing

anti-adenovirus antibodies can also abrogate induction of immunity

to expressed transgenes in adenoviral vector vaccine applications.
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Pre-existing immunity also can lead to increased toxicity and even

mortality in mouse and non-human primate models in response to

adenovirus vector challenge [Varnavski et al., 2002, 2005; Vlachaki

et al., 2002]. These increased immune responses may be due to

increased vector uptake by innate immune cells; innate immune

cells can take up antibody-opsonized virus via Fc-receptor-

mediated pathways. Enhanced uptake of antibody-opsonized vector

by immune cells might also result in increased exposure of

intracellular innate receptors such as NALP3 or TLR9 to the virus,

resulting in inflammatory gene expression [Muruve et al., 2008;

Zaiss et al., 2009] (Fig. 3).

Considering the potential increased toxicity and reduced vector

efficacy in immunized hosts, it is clear that identifying means to

evade antibody neutralization is a major necessity if we are to develop

systemic adenovirus therapies. Current strategies to overcome Ad5

vector antibody include, but are not limited to, use of alternative

adenovirus serotypes, modification or chimerism of capsid hexon

proteins and coating virus with PEG and similar polymers.

Targeting adenovirus to specific organs, tissues or cell types,

reducing interactions with undesired target organs, tissues or cells,

and modulating immune responses to adenovirus vectors and/or

transgenes are major objectives for adenovirus gene therapy in

the future. To understand how capsid modifications affect

both targeting and immune responses, we require more detailed

knowledge about underlying mechanisms that determine cell

uptake, transduction, productive infection and immune induction.
Fig. 3. Cytokine and chemokine production in mice with circulating anti-

adenovirus antibodies. Opsonization of adenovirus by neutralizing antibodies

promotes increased virus particle binding to, and uptake by, Fc receptors

present on macrophages and other cells of the immune system. As a result of

increased virus uptake by immune cells, adenovirus vectors are more rapidly

cleared from the circulation than they are in naı̈ve animals, and transgene

expression is reduced in target tissues. The increased Fc-receptor mediated

uptake of vector by immune cells leads to enhanced engagement of innate

receptors such as TLR9 or NALP3, increased cytokine and chemokine release

and increased host toxicity. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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Additional studies using these vectors with cells ex vivo, in animal

models and in phase I clinical trials should provide valuable

information about antibody escape, host safety and vector

biological efficacy. In light of recently emerging data on adenovirus

interactions with serum proteins and blood cells in vivo, however,

current capsid modifications aimed at tropism changes need to

be re-evaluated. New approaches to reducing initial innate immune

responses and to evading pre-existing adenovirus immunity are

critically needed, if we are to develop reliable, robust adenovirus

therapeutic agents.
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